- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000200001000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Ruoshi (3)
-
Dave, Achal (2)
-
Ozguroglu, Ege (2)
-
Tokmakov, Pavel (2)
-
Vondrick, Carl (2)
-
Dogic, Zvonimir (1)
-
Fraden, Seth (1)
-
Hagan, Michael F. (1)
-
Hong, Pengyu (1)
-
Joshi, Chaitanya (1)
-
Lemma, Linnea (1)
-
Liang, Junbang (1)
-
Norton, Michael M. (1)
-
Sargent, Kyle (1)
-
Song, Shuran (1)
-
Sudhakar, Sruthi (1)
-
Van_Hoorick, Basile (1)
-
Wu, Rundi (1)
-
Zheng, Changxi (1)
-
Zhou, Zhengyang (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 13, 2025
-
Van_Hoorick, Basile; Wu, Rundi; Ozguroglu, Ege; Sargent, Kyle; Liu, Ruoshi; Tokmakov, Pavel; Dave, Achal; Zheng, Changxi; Vondrick, Carl (, European Conference on Computer Vision)
-
Zhou, Zhengyang; Joshi, Chaitanya; Liu, Ruoshi; Norton, Michael M.; Lemma, Linnea; Dogic, Zvonimir; Hagan, Michael F.; Fraden, Seth; Hong, Pengyu (, Soft Matter)null (Ed.)Active nematics are a class of far-from-equilibrium materials characterized by local orientational order of force-generating, anisotropic constitutes. Traditional methods for predicting the dynamics of active nematics rely on hydrodynamic models, which accurately describe idealized flows and many of the steady-state properties, but do not capture certain detailed dynamics of experimental active nematics. We have developed a deep learning approach that uses a Convolutional Long-Short-Term-Memory (ConvLSTM) algorithm to automatically learn and forecast the dynamics of active nematics. We demonstrate our purely data-driven approach on experiments of 2D unconfined active nematics of extensile microtubule bundles, as well as on data from numerical simulations of active nematics.more » « less
An official website of the United States government

Full Text Available